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Abstract
We study the magnetic properties around the Mott transition in the Kagomé
lattice Hubbard model by using the cellular dynamical mean field theory
combined with quantum Monte Carlo simulations. By investigating the q-
dependence of the susceptibility, we find a dramatic change in the dominant spin
fluctuations around the Mott transition. The spin fluctuations in the insulating
phase favour down to the lowest temperature a spatial spin configuration in
which antiferromagnetic correlations are strong only in one chain direction but
almost vanishing in the others.

(Some figures in this article are in colour only in the electronic version)

Geometrical frustration is one of the long-standing problems in spin systems. Recently,
frustration effects have also attracted much attention in itinerant electron systems. The
observation of heavy fermion behaviour in LiV2O4 [1], which has the pyrochlore lattice
structure with a corner-sharing network of tetrahedra, has activated theoretical studies of
electron correlations with geometrical frustration [2–4]. The discovery of superconductivity in
the triangular lattice compound Nax CoO2·yH2O [5] and the β-pyrochlore osmate KOs2O6 [6]
has further stimulated intensive studies of frustrated electron systems. Geometrical frustration
has uncovered new aspects of the Mott metal–insulator transition. Among others, a novel
quantum liquid ground state was suggested for the insulating phase of the triangular lattice [7],
and this may be relevant for frustrated organic materials such as κ-(ET)2Cu2(CN)3 [8].

The Kagomé lattice (figure 1) is another prototype of frustrated systems showing many
essential properties with the pyrochlore lattice. It is suggested that a correlated electron system
on the Kagomé lattice can be an effective model of Nax CoO2·yH2O by properly considering
anisotropic hopping matrix elements in the cobalt 3d orbitals [9]. The electron system on the
Kagomé lattice in the metallic regime was studied recently by using the fluctuation exchange
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Figure 1. (a) Sketch of the Kagomé lattice and (b) the effective cluster model using three-site cluster
CDMFT. (c) First Brillouin zone of the Kagomé lattice.

(FLEX) approximation [10] and quantum Monte Carlo (QMC) method [11], etc [12, 13]. In
our recent paper [14], we studied electron correlations in the Kagomé lattice Hubbard model,
and found the first-order Mott transition at the Hubbard interaction U/W ∼ 1.37 (W : band
width).

In this paper, we focus on the magnetic properties of the Kagomé lattice Hubbard model.
By applying the cellular dynamical mean field theory (CDFMT) [15], we discuss the effects of
geometrical frustration around the metal–insulator transition where frustration is stronger than
in the weak coupling regime. We consider the standard Hubbard model with nearest-neighbour
hopping t > 0 on the Kagomé lattice,

H = −t
∑

〈i, j〉,σ
c†

iσ c jσ + U
∑

i

ni↑ni↓, (1)

with niσ = c†
iσ ciσ , where c†

iσ (c jσ ) creates (annihilates) an electron with spin σ at the site i . In
the following, we use the band width W = 6t as the energy unit. The dynamical mean field
theory (DMFT) [16] has given substantial theoretical progress in the field of the Mott transition
but it does not incorporate spatially extended correlations. Therefore, in order to take account
of geometrical frustration, we use CDMFT, a cluster extension of DMFT [15, 17, 18], which
has been applied successfully to frustrated systems such as the Hubbard model on the triangular
lattice [19–21].

In CDMFT, the original lattice is regarded as a superlattice consisting of clusters, which
is then mapped onto an effective cluster model via a standard DMFT procedure. As shown in
figure 1, the Kagomé lattice Hubbard model is mapped onto a three-site cluster coupled to the
self-consistently determined medium,

Seff =
∫ β

0
dτ dτ ′ ∑

γ,δ,σ

c†
γσ (τ )G−1

γ δσ

(
τ − τ ′) cδσ

(
τ ′) + U

∫ β

0
dτ

∑

γ

nγ↑ (τ ) nγ↓ (τ ) . (2)

Given the Green’s function for the effective medium, Ĝσ , we can compute the cluster Green’s
function Ĝσ and the cluster self-energy �̂σ by solving the effective cluster model with the
QMC method [22]. Here, Ĝσ , Ĝσ , and �̂σ are described by 3 × 3 matrices. The effective
medium Ĝσ is then computed via the Dyson equation,

Ĝ−1
σ (ω) =

[
∑

k

ĝσ (k : ω)

]−1

+ �̂σ (ω) , (3)

ĝσ (k : ω) =
[
ω + μ − t̂ (k) − �̂σ (ω)

]−1
, (4)
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where μ is the chemical potential and t̂ (k) is the Fourier-transformed hopping matrix for the
superlattice,

tγ δ (k) =
∑

i, j

e−k·(ri −r j )tγ δ (i, j) . (5)

Here the summation of k is taken over the reduced Brillouin zone of the superlattice (see
figure 1(c)). After 20 iterations of this procedure, numerical convergence is reached. In each
iteration, we typically use 106 QMC sweeps and Trotter time slices L = 2W/T to reach
sufficient computational accuracy. Furthermore, we exploit an interpolation scheme based
on a high-frequency expansion of the discrete imaginary-time Green’s function obtained by
QMC [23] in order to reduce time slice errors.

We now investigate the magnetic correlation around the Mott transition in the Kagomé
lattice Hubbard model. We calculate the wavevector dependence of the static susceptibility,

χγδ(q) =
∫ 1/T

0
dτ

∑

k,k′

〈
c†

kγ↑ (τ ) ck+qγ↓ (τ ) c†
k′+qδ↓ (0) ck′δ↑ (0)

〉
, (6)

where γ, δ = 1, 2, 3 denote the site indices in the unit cell. We employ the standard procedure
in DMFT to calculate χγδ(q) [16], which includes nearest-neighbour correlations as well as on-
site correlations. In order to obtain χγδ(q), we first calculate the two-particle Green’s function
in the effective cluster model (2),

Cγ δ (iωl , iωm) = T
∫ β

0

∫ β

0

∫ β

0

∫ β

0
dτ1 dτ2 dτ3 dτ4

× e−iωl (τ1−τ2)e−iωm (τ3−τ4)Cγ δ (τ1, τ2, τ3, τ4) , (7)

Cγ δ (τ1, τ2, τ3, τ4) =
〈
Tτ c†

γ↑ (τ1) cγ↓ (τ2) c†
δ↓ (τ3) cδ↑ (τ4)

〉
, (8)

and extract the vertex function �γδ (iωl , iωm) via the Bethe–Salpeter equation,

�̂ = Ĉ0
−1 − Ĉ−1, (9)

where C0 is the bare two-particle Green’s function,

C0
γ δ(iωl) = − 1

T

[
∑

k

gγ δ↓ (k : iωl)

] [
∑

k

gδγ↑ (k : iωl)

]
. (10)

On the other hand, the bare q-dependent Green’s function in the lattice system is calculated by

C0
γ δ(q : iωl) = − 1

T

∑

k

gγ δ↓ (k + q : iωl) gγ δ↑ (k : iωl) . (11)

By using equations (9) and (11), we can compute the lattice q-dependent Green’s function,

Ĉ (q) =
[
Ĉ0 (q)

−1 − �̂
]−1

. (12)

Taking account of the phase factor, we finally obtain the q-dependent susceptibility,

χγδ(q) = T 2
∑

l,m

Cγ δ (q : iωl , iωm) e−iq·(rγ −rδ). (13)

It is convenient to introduce χm(q) for three normal modes (m = 1, 2, 3) by diagonalizing
the 3 × 3 matrix χγδ(q). In the upper panels of figure 2, we show the three eigenmodes of
the susceptibility at T/W = 1/30 for several values of interaction strength U/W . In the
noninteracting case, the largest eigenvalue of the susceptibility χ1(q) takes a maximum at six
points in the Brillouin zone, the second largest one, χ2(q), has a maximum at q = (0, 0), and
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Figure 2. The wavevector dependence of the static susceptibility χm(q) for several values of U/W
at T/W = 1/30. The three-dimensional plots of χm(q) are shown in the upper panels, from top to
bottom, m = 1, 2, 3. The two-dimensional plots in the lower panels show the dominant mode of
the susceptibility χ1(q) in the upper panels. Hexagons in figures denote the first Brillouin zone, as
shown figure 1(c).

Figure 3. The enhanced spin correlations in the insulating phase U/W = 1.4 at T/W = 1/30.

the smallest one, χ1(q), takes maxima at the corners of the Brillouin zone. As U/W increases,
localized moments are formed and the susceptibility is enhanced, as expected. In particular,
the q = (0, 0) peak of χ2(q) becomes strongly enhanced, which is consistent with the previous
QMC study [11]. On the other hand, the dominant mode of the susceptibility χ1(q) shows
only weak q-dependence. As U/W increases, χ1(q) is enhanced not only at the six points
mentioned above but also on the lines passing through � and M points, so that the q-dependence
of the susceptibility gets suppressed and becomes much weaker at U/W = 1.1 than in the
noninteracting case. This behaviour is consistent with the previous FLEX calculation in the
weak coupling regime [10]. We confirm that the feature of the suppressed q-dependence of the
dominant magnetic mode due to geometrical frustration persists up to a fairly large-U region.

We further find notable results in the insulating phase. The Mott metal–insulator transition
occurs at U/W ∼ 1.37 [14]. As shown in the lower panels of figure 2, once the system
enters the insulating phase, the q-dependence of χ1(q) dramatically changes its character due
to the enhancement of short-range antiferromagnetic (AF) correlations [14]. At U/W = 1.4,
the susceptibility takes the maximum value along the three lines in q space instead of the
six points in the weak coupling regime. Furthermore, by investigating the eigenvectors of
χ1(q), we find that two spins in the unit cell are antiferromagnetically coupled but the other
spin is free. Therefore, at these temperatures, the enhanced spin fluctuations favour a spatial
spin configuration in which one-dimensional (1D) AF-correlated spin chains are independently
formed in three distinct directions. The three types of enhanced spin correlations are illustrated
in figure 3. This spin correlation is one of the naturally expected spin correlation on the Kagomé
lattice, because it stabilizes antiferromagnetic configurations in one direction, which is more
stable than the naively expected spin configuration having a singlet pair and a free spin in each
cluster. These 1D correlations in the finite-T Mott insulating phase are different from the results
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Figure 4. The inverse of the maximum susceptibility, 1/χmax, as a function of U/W at T/W =
1/30.

for the Heisenberg model on the Kagomé lattice with the nearest-neighbour exchange obtained
by both classical and semi-classical approximations [24, 25], but are similar to the q = 0
structure predicted for the classical Heisenberg model with a further neighbour exchange [24].
The essential difference from [24] is that there is almost no correlation between the different
chains in our results for the Hubbard model. It remains an interesting problem to compare the
q-dependence of the susceptibility in the large-U and low-T regime with the results for the
Heisenberg model.

Finally, we show the maximum value of the susceptibility χmax as a function of U/W
in figure 4. As U/W increases towards the Mott transition point, 1/χmax decreases almost
linearly, as expected. When U/W is further increased and the system enters the insulating
phase, the spin correlation changes into the 1D spin correlation, as discussed above, and then
χmax saturates. Therefore, we find no evidence of real instability to 1D ordering in the present
calculation. However, such enhanced spin fluctuations affect the low-energy dynamics in the
insulating phase [14].

In summary, we have studied the magnetic properties around the Mott transition in
the Kagomé lattice Hubbard model by means of CDMFT combined with QMC. We have
investigated the q-dependence of the susceptibility, and obtained results that are consistent
with the previous studies: the second-largest eigenmode of the susceptibility shows a strong
q-dependence, taking a maximum at q = (0, 0), and the q-dependence of the maximum
eigenmode of the susceptibility becomes suppressed as U increases in the metallic phase. We
also find a dramatic change in the dominant spin fluctuations around the Mott transition. The
spin fluctuations in the insulating phase favour a novel spatial spin configuration in which 1D
AF-correlated spin chains are independently formed in three distinct directions. Although the
spin liquid state or other nonmagnetic ordered states may be stabilized at zero temperature [26],
the enhanced 1D spin correlations could emerge in the finite-T Mott insulating phase.
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